This brief presents a novel tracking control algorithm for a micro-robot based on dynamics and positional measurements. The algorithm improves the tracking performance and response time. We designed a two-degree-of-freedom (TDOF) control, which is widely utilized in industrial servo systems, for a micro-robot. Our TDOF control prevents undesirable effects, such as model uncertainty. The dynamic characteristics of a micro-robot were analyzed using the frequency response function (FRF), and a dynamic model specific for micro-robot motion was derived. This brief also addresses the dual-rate problem of micro-robot control systems by designing a dual-rate state observer (DSO) that provides positional information for the micro-robot when no camera updates are available. Thus, the TDOF controller provides feedback control at higher sampling frequencies. The performance of the controller was experimentally verified.