The paper reports on particle image velocimetry (PIV) measurements in turbulent slot jets bounded by two solid walls with the separation distance smaller than the jet width (5–40%). In the far-field such jets are known to manifest features of quasi-two dimensional, two component turbulence. Stereoscopic and tomographic PIV systems were used to analyse local flows. Proper orthogonal decomposition (POD) was applied to extract coherent modes of the velocity fluctuations. The measurements were performed both in the initial region close to the nozzle exit and in the far fields of the developed turbulent slot jets for Re⩾10,000. A POD analysis in the initial region indicates a correlation between quasi-2D vortices rolled-up in the shear layer and local flows in cross-stream planes. While the near-field turbulence shows full 3D features, the wall-normal velocity fluctuations day out gradually due to strong wall-damping resulting in an almost two-component turbulence. On the other hand, the longitudinal vortex rolls take over to act as the main agents in wall-normal and spanwise mixing and momentum transfer. The quantitative analysis indicates that the jet meandering amplitude was aperiodically modulated when arrangement of the large-scale quasi-2D vortices changed between asymmetric and symmetric pattern relatively to the jet axis. The paper shows that the dynamics of turbulent slot jets are more complex than those of 2D, plane and rectangular 3D jets. In particular, the detected secondary longitudinal vortex filaments and meandering modulation is expected to be important for turbulent transport and mixing in slot jets. This issue requires further investigations.
Read full abstract