New binary isotherms are crucial for designing chemical separation processes within supercritical carbon dioxide (CO2) + trialkoxysilane systems. Vapor-liquid equilibria (VLE) were investigated for two-component systems, trimethoxymethylsilane + CO2 and triethoxymethylsilane + CO2, at five temperatures (313.2, 333.2, 353.2, 373.2, and 393.2 K) and pressures up to 14.07 MPa using a synthetic high-pressure phase equilibria apparatus. The pressure-temperature (P-T) plot indicates that the critical mixture curve lies between the critical points of CO2 and the trialkoxysilane compounds. The solubility of trimethoxymethylsilane and triethoxymethylsilane in CO2 increased with increasing temperature at constant pressure, following a type-I phase behavior characteristic. The experimentally observed VLE values of the CO2 + trialkoxysilane systems were correlated using the Peng-Robinson equation of state with binary parameters (kij and ηij) in the conventional mixing rule. The model accuracy was validated by calculating the average relative deviation percentage for the pressure of the binary systems, resulting in values of 4.98% for the trimethoxymethylsilane + CO2 system and 3.64% for the triethoxymethylsilane + CO2 system. The estimated variables fell within reasonable limits and showed no significant differences between the predicted and observed VLE data for both systems.