This review is devoted to summarizing recent developments of the linear sigma model (LSM) in cold and dense two-color QCD (QC2D), in which lattice simulations are straightforwardly applicable thanks to the disappearance of the sign problem. In QC2D, both theoretical and numerical studies derive the presence of the so-called baryon superfluid phase at a sufficiently large chemical potential (μq), where diquark condensates govern the ground state. The hadron mass spectrum simulated in this phase shows that the mass of an iso-singlet (I=0) and 0− state is remarkably reduced, but such a mode cannot be described by the chiral perturbation theory. Motivated by this fact, I have invented a LSM constructed upon the linear representation of chiral symmetry, more precisely Pauli–Gürsey symmetry. It is shown that my LSM successfully reproduces the low-lying hadron mass spectrum in a broad range of μq simulated on the lattice. As applications of the LSM, topological susceptibility and sound velocity in cold and dense QC2D are evaluated to compare with the lattice results. Additionally, the generalized Gell–Mann–Oakes–Renner relation and hardon mass spectrum in the presence of a diquark source are analyzed. I also introduce an extended version of the LSM incorporating spin-1 hadrons.
Read full abstract