This paper presents methods for the formation and properties of light fields that controllably vary in time and space, obtained as a result of the interference of three or four coherent light beams using refractive optical elements. The formation of three-beam and four-beam interference fields is carried out using trihedral and tetrahedral glass pyramids respectively. The possibility of the interference field displacement in the transverse plane is ensured by devices for controlled phase changes of at least two of the interfering beams. The directions of propagation of these beams do not lie in the same plane with the optical axis of the original beam incident on the pyramid. In threeand four-beam dynamic interference fields the peak intensity values are higher than in the original laser beams and two-beam interference fields, so it is advisable to use them for processing flat objects with laser radiation, moving the interference maxima along the surface of the object. With a pairwise azimuthal displacement of the propagation directions of four interfering beams around the longitudinal axis, a dynamic interference field is formed, the periodically structured maxima of which cyclically smoothly change their shape from cells to band and back. At different speeds of pairs of directions the interference structure of the maxima rotates around the longitudinal axis. Therefore, this field can be used for therapeutic effects on biological tissues and for mixing microparticles in suspensions and emulsions. Since the local maxima of the intensity of all these interference fields have dimensions of the order of several micrometers while exceeding in value the maximum intensity of the initial light beam, these fields in the cross section are gradient and therefore can be used not only for laser exposure, but also for moving ensembles of microparticles including for sorting and changing concentration.
Read full abstract