Currently, when renewable generation participates in frequency regulation, the traditional control method is to emulate synchronous generators through virtual inertia control. However, virtual inertia has a time delay, so essentially, it is a fast power response. Meanwhile, virtual inertia control is likely to be affected by frequency fluctuation since it responds to the derivative of frequency. Hence, it’s worth exploring non-virtual inertia control for renewable energy when participating in frequency regulation. For this reason, a novel two-segment droop control scheme for renewable energy frequency regulation is proposed in this research. Firstly, the extended system frequency regulation (SFR) model, which contains virtual inertia with time delay, is built and analytically solved by order decrement based on the Routh approximation method. Afterwards, according to the analytical solution, time delay affects the frequency response of renewable energy. It can also be analytically proved that the non-virtual inertia control, e.g., sole droop control, could replace virtual inertia under the same frequency deviation. Still, more energy may be needed for frequency regulation. Furthermore, a novel two-segment droop control is presented, and to analytically prove its ability to replace virtual inertia, the impulse function balancing principle and the integration by parts algorithm were adopted to address the initial conditions of the differential equation. Based on the analytical expression, it can be analytically proved that a lower frequency deviation can be obtained under the same frequency regulation energy. Accordingly, a parameter-setting method for two-segment droop control was proposed. Finally, the effectiveness of the proposed method is verified by using a two-area system frequency response model, and the results reveal that it can be used to replace virtual inertia and has better performance.
Read full abstract