We make a first study of the phenomenological implications of twisted moduli in type I intersecting D5-brane models, focussing on the resulting predictions at the LHC using SOFTSUSY to estimate the Higgs and sparticle spectra. Twisted moduli can play an important role in giving a viable string realisation of sequestering in the limit where supersymmetry breaking comes entirely from the twisted moduli. We focus on a particular string inspired version of gaugino mediation in which the first two families are localised at the intersection between D5-branes, whereas the third family and Higgs doublets are allowed to move within the world-volume of one of the branes. The soft supersymmetry breaking third family sfermion mass terms are then in general non-degenerate with the first two families. We place constraints upon parameter space and predictions of flavour changing neutral current effects. Twisted moduli domination is studied and, as well as solving the most serious part of the SUSY flavour problem, is shown to be highly constrained. The constraints are weakened by switching on gravity-mediated contributions from the dilaton and untwisted T-moduli sectors. In the twisted moduli domination limit we predict a stop-heavy MSSM spectrum and quasi-degenerate lightest neutralino and chargino states with wino-dominated mass eigenstates.