The basic systems in this study are HL (1; 1:2 condensation product of 2,6-diformyl-4-ethylphenol and o-anisidine) and its ZnII and CdII complexes of composition [ZnII(LH)Cl2]·CH3OH (2) and [CdII(LH)Cl2] (3), all of which are synthesized and characterized by CHN elemental analyses, single crystal X-ray crystallography, powder X-ray diffraction (PXRD) and fourier transform infrared (FT-IR) spectrum. It has been established from the following experimental and theoretical studies that 1 is a fluorescent turn on sensor of ZnII ion and it exhibits all of excited state intramolecular proton transfer (ESIPT), photoinduced electron transfer (PET), twisted intramolecular charge transfer (TICT) and aggregation induced enhanced emission (AIEE): (i) Detailed absorption and emission (steady state / time resolved) studies in various single solvents, in solvent mixtures, with pH variation, with various single metal ions, with mixtures of metal ions, on varying temperature and on varying viscosity; (ii) dynamic light scattering (DLS) and scanning electron microscopy (SEM) in solvent mixtures; (iii) density functional theory (DFT) and time dependent density functional theory (TD-DFT) calculations in ground and excites states of 1–3. It is shown that 1 can be efficaciously applied in inkless writing with the “write − erase − write” facility. The mechanisms/reasons of the observed properties have been addressed. The difference in fluorescence of ZnII and CdII complexes, unusual case of crystal structures of probe and complexes with ZnII and CdII, unusual features in the structures of 2 and 3 as well as a structure–property correlation have been discussed.
Read full abstract