Wind power generators have a complex structure and operate in harsh environments, where working conditions are highly variable. As a result, the operation and maintenance of wind turbines face numerous challenges. In response to the need for the development of wind power operation and maintenance informatization, it is necessary to satisfy the requirements for multi-party collaborative monitoring to ensure the long-term safe and reliable operation of wind turbines. In this paper,we proposed a method for building an intelligent early-warning digital twin platform focused on the simulation of wind turbines and tower components. The platform construction method proposed in this article is based on the Web and from the perspective of intelligent operation and maintenance of wind turbines. It establishes a warning model for tower agent simulation and vibration signal time series prediction. The tower mechanism model is established based on the operating data set of a 4MW wind turbine at Shanghai Electric. Different physical responses of the tower under different wind speeds are simulated, and an agent model using LSTM and decision tree models is established for predictive analysis. To account for uncertainty, a Bayesian-LSTM model is established to warn against predictive errors. Finally, a data-driven digital twin wind turbine platform is achieved on the Web.
Read full abstract