Rapid-distortion theory is adapted to introduce a truly unsteady closure into a simple phenomenological turbulence model in order to describe the unsteady response of a turbulent wall layer exposed to a temporarily oscillating pressure gradient. The closure model is built by taking the ratio of turbulent shear stress to turbulent kinetic energy to be a function of the effective strain. The latter accounts for the history of the flow. The computed unsteady velocity fluctuations and modulated turbulent stresses compare favourably in the ‘non-quasi-steady’ frequency range, where quasi-steady assumptions would fail. This suggests that the concept of rapid distortion is especially appropriate for unsteady flows. This paper forms the basis for acoustical studies of the problem to be reported elsewhere.
Read full abstract