Published in last 50 years
Articles published on Turbulent Field
- Research Article
2
- 10.1017/jfm.2024.713
- Nov 25, 2024
- Journal of Fluid Mechanics
- Kevin Gouder + 2 more
Wind tunnel measurements of the incident turbulent velocity fields and axial forces on a horizontal axis turbine and porous disc analogues are reported. The models were tested in both a simulated atmospheric boundary layer (ABL) and in grid turbulence, allowing for a range of turbulence length scale to rotor diameter ratios to be considered. A theoretical framework to account for the combined effect of distortion and potential flow blocking in the induction zone is presented. In the case of very large length-scale turbulence to diameter ratios, where distortion effects are minimal, a quasi-steady approach is adopted for the effect of blocking. For the small length-scale ratio limit, the method is developed from the classical analyses for rapid distortion of turbulence and blockage from flow through a porous sheet of resistance. For general length-scale ratios, an efficient prediction method based on interpolation between the two length-scale ratio extremes is established. For very large length-scale ratios, a quasi-steady theory without distortion is appropriate for a rotor or disc in a simulated ABL. The small length-scale theory is applicable for tests conducted in grid turbulence. The results of the study can inform the prediction and interpretation of typical measurements of turbulence within the induction zone and the fluctuating loads on a rotor, at both prototype and full scale. This is of particular importance to fatigue load assessments.
- Research Article
1
- 10.1038/s41467-024-53938-3
- Nov 20, 2024
- Nature Communications
- A Sladkov + 18 more
Interactions between magnetic fields advected by matter play a fundamental role in the Universe at a diverse range of scales. A crucial role these interactions play is in making turbulent fields highly anisotropic, leading to observed ordered fields. These in turn, are important evolutionary factors for all the systems within and around. Despite scant evidence, due to the difficulty in measuring even near-Earth events, the magnetic field compression factor in these interactions, measured at very varied scales, is limited to a few. However, compressing matter in which a magnetic field is embedded, results in compression up to several thousands. Here we show, using laboratory experiments and matching three-dimensional hybrid simulations, that there is indeed a very effective saturation of the compression when two independent parallel-oriented magnetic fields regions encounter one another due to plasma advection. We found that the observed saturation is linked to a build-up of the magnetic pressure, which decelerates and redirects the inflows at their encounter point, thereby stopping further compression. Moreover, the growth of an electric field, induced by the incoming flows and the magnetic field, acts in redirecting the inflows transversely, further hampering field compression.
- Research Article
2
- 10.1017/jfm.2024.974
- Nov 19, 2024
- Journal of Fluid Mechanics
- Sen Li + 3 more
The present study offers a twofold contribution on counter-gradient transport (CGT) of turbulent scalar flux. First, by examining turbulent scalar mixing through synchronized particle image velocimetry and planar laser-induced fluorescence on an inclined jet in cross-flow, we clarify the previously unexplained phenomenon of CGT, revealing key flow structures, their spatial distribution and modelling implications. Statistical analysis identifies two distinct CGT regions: local cross-gradient transport in the windward shear layer and non-local effects near the wall after injection. These behaviours are driven by specific flow structures, namely Kelvin–Helmholtz vortices (local) and wake vortices (non-local), suggesting that scalar flux can be decomposed into a gradient-type term for gradient diffusion and a term for large-eddy stirring. Second, we propose a new approach for reconstruction of turbulent mean flow and scalar fields using continuous adjoint data assimilation (DA). By rectifying model-form errors through anisotropic correction under observational constraints, our DA model minimizes discrepancies between experimental measurements and numerical predictions. As expected, the introduced forcing term effectively identifies regions where traditional models fall short, particularly in the jet centreline and near-wall regions, thereby enhancing the accuracy of the mean scalar field. These enhancements occur not only within the observation region but also in unseen regions, underscoring present DA approach's reliability and practicality for reproducing mean flow behaviours from limited data. These findings lay a solid foundation for adjoint-based model-consistent data-driven methods, offering promising potential for accurately predicting complex flow scenarios like film cooling.
- Research Article
- 10.1007/s10035-024-01481-9
- Nov 15, 2024
- Granular Matter
- Tian-Sheng Liu + 1 more
Experimental studies on fluctuation properties of dust, turbulence and electric field during floating dust weather in Lanzhou
- Research Article
- 10.1017/jfm.2024.933
- Nov 14, 2024
- Journal of Fluid Mechanics
- Roozbeh Ehsani + 6 more
Stochastically generated instantaneous velocity profiles are used to reproduce the outer region of rough-wall turbulent boundary layers in a range of Reynolds numbers extending from the wind tunnel to field conditions. Each profile consists in a sequence of steps, defined by the modal velocities and representing uniform momentum zones (UMZs), separated by velocity jumps representing the internal shear layers. Height-dependent UMZ is described by a minimal set of attributes: thickness, mid-height elevation, and streamwise (modal) and vertical velocities. These are informed by experimental observations and reproducing the statistical behaviour of rough-wall turbulence and attached eddy scaling, consistent with the corresponding experimental datasets. Sets of independently generated profiles are reorganized in the streamwise direction to form a spatially consistent modal velocity field, starting from any randomly selected profile. The operation allows one to stretch or compress the velocity field in space, increases the size of the domain and adjusts the size of the largest emerging structures to the Reynolds number of the simulated flow. By imposing the autocorrelation function of the modal velocity field to be anchored on the experimental measurements, we obtain a physically based spatial resolution, which is employed in the computation of the velocity spectrum, and second-order structure functions. The results reproduce the Kolmogorov inertial range extending from the UMZ and their attached-eddy vertical organization to the very-large-scale motions (VLSMs) introduced with the reordering process. The dynamic role of VLSM is confirmed in the $-u^{\prime }w^{\prime }$ co-spectra and in their vertical derivative, representing a scale-dependent pressure gradient contribution.
- Research Article
1
- 10.1007/s11012-024-01904-0
- Nov 14, 2024
- Meccanica
- Navid Monshi Tousi + 2 more
We assess the suitability of Reynolds-Averaged Navier–Stokes (RANS) simulation using the Spalart-Allmaras (SA) turbulence model as a closure in analysing the performance of fluidic Active Flow Control (AFC) applications. In particular, we focus on the optimal set of actuation parameters found by Tousi et al. (Appl Math Model, 2021) and Tousi et al. (Aerospace Sci Technol 127:107679, 2022) for a SD7003 airfoil at a Reynolds number Re=6×104 and post-stall angle of attack α=14∘ fitted with a Synthetic Jet Actuator (SJA). The Large Eddy Simulation (LES) presented in that work is taken as the reference to identify the best choice of boundary conditions for the turbulence field ν~ at both domain inlet and jet orifice in two-dimensional SA-RANS computations. Although SA-RANS is far less accurate than LES, our findings show that it can still predict macroscopic aggregates such as lift and drag coefficients quite satisfactorily and at a much lower computational cost, provided that turbulence levels of the actuator jet are set to a realistic value. An adequate value of ν~ is instrumental in capturing the correct flow behaviour of the reattached boundary layers for close-to-optimal actuated cases. This validates the use of RANS-SA as a reliable and cost-effective simulation method for the preliminary optimisation of SJA parameters in AFC applications, provided that thorough sensitivity analysis on turbulence-related boundary conditions is performed. Given the strong sensitivity of flow detachment on the laminar or turbulent nature of boundary layers, our results suggest that such analyses are particularly indispensable for vastly separated flow scenarios in general, notably for bluff bodies at moderate transcritical Reynolds numbers.
- Research Article
- 10.1017/jfm.2024.673
- Nov 12, 2024
- Journal of Fluid Mechanics
- Ian Eames + 1 more
The penetration of a spherical vortex into turbulence is studied theoretically and experimentally. The characteristics of the vortex are first analysed from an integral perspective that reconciles the far-field dipolar flow with the near-field source flow. The influence of entrainment on the vortex drag force is elucidated, extending the Maxworthy (J. Fluid Mech., vol. 81, 1977, pp. 465–495) model to account for turbulent entrainment into the vortex movement and vortex penetration into an evolving turbulent field. The physics are explored numerically using a spherical vortex (initial radius $R_0$ , speed $U_{v0}$ ), characterised by a Reynolds number $Re_0(=2R_0U_{v0}/\nu$ , where $\nu$ is the kinematic viscosity) of 2000, moving into decaying homogeneous turbulence (root-mean-square $u_0$ , integral scale $L$ ) with turbulent intensity $I_t=u_0/U_{v0}$ . When the turbulence is absent ( $I_t=0$ ), a wake volume flux leads to a reduction of vortex impulse that causes the vortex to slow down. In the presence of turbulence ( $I_t> 0$ ), the loss of vortical material is enhanced and the vortex speed decreases until it is comparable to the local turbulent intensity and quickly fragments, penetrating a distance that scales as $I_t^{-1}$ . In the experimental study, a vortex ( $Re_0\sim 1490\unicode{x2013}5660$ ) propagating into a statistically steady, spatially varying turbulent field ( $I_{ve}=0.02$ to 0.98). The penetration distance is observed to scale with the inverse of the turbulent intensity. Incorporating the spatially and temporally varying turbulent fields into the integral model gives a good agreement with the predicted trend of the vortex penetration distance with turbulent intensity and insight into its dependence on the structure of the turbulence.
- Research Article
1
- 10.1016/j.optlaseng.2024.108675
- Nov 9, 2024
- Optics and Lasers in Engineering
- Na Yao + 4 more
Super-oscillation sub-diffraction focusing with emulated atmospheric turbulence
- Research Article
- 10.1016/j.scitotenv.2024.177301
- Nov 9, 2024
- Science of the Total Environment
- R Maltauro + 3 more
Gravel-bed rivers draining mountainous forested headwater regions are critically important for drinking water supply and ecological integrity. These rivers, however, have been increasingly impacted by intensifying anthropogenic and natural (especially climate change exacerbated) landscape disturbances that commonly increase hillslope/channel connectivity and the delivery of cohesive sediment (<63 μm) and associated pollutants. Despite the known deleterious threats of excess cohesive sediments, there is still limited understanding of their transport and intra-gravel storage due to the complexities of such processes. Accordingly, the objectives of this study were to: i) calibrate and validate a semi-empirical cohesive sediment transport model (RIVFLOC) using the observations from flume experiments; ii) estimate the intra-gravel storage capacity for cohesive sediment with the calibrated model based on the field dataset (collected in two field campaigns between 2019 and 2021), and; iii) investigate mechanisms of cohesive sediment transport dynamics in this gravel-bed river, identifying knowledge gaps and areas for future research. Our results showed that despite the increased floc settling velocity, deposition was hindered by turbulent flow fields. The model predicted that ∼60 % of upstream cohesive sediment would ingress within the 10 km study reach due to the flow interaction with the gravel-bed. Despite the agreement between flume and field observations on ingress rates and preferential ingress of coarser (∼100 μm) flocs, notable differences were observed between modelled and field datasets, highlighting unknowns regarding cohesive sediment exfiltration without framework mobilization. This study uniquely integrates field measurements, flume experiments, and modelling strategies to evaluate the transport and fate of cohesive sediment in a gravel-bed river. Accordingly, our findings advance current knowledge on the mechanistic understanding of cohesive sediment transport and highlight future research directions.
- Research Article
- 10.1002/we.2959
- Nov 9, 2024
- Wind Energy
- Zhaowei Wang + 4 more
ABSTRACTQuantitation of damping is of great significance for the design and condition assessment of wind turbines. The authors' previous theoretical and numerical studies showed that compared with damping ratios, a modal aerodynamic damping matrix can better describe the damping coupling in the fore‐aft (FA) and side‐side (SS) tower motions. In the present study, an improved damping identification method was first proposed to identify this damping matrix with artificial exciters and then verified by using OpenFAST simulations under different excitation frequencies, excitation force amplitudes, and turbulent wind fields. Following the numerical study, a scaled wind turbine model with a geometric scale ratio of 1/75 was carefully designed based on the NREL 5‐MW wind turbine prototype, in which the scaled blade design follows the rule in thrust coefficient similarity. An identification study was performed with this scaled model by a series of wind tunnel tests. The modal aerodynamic damping matrix was identified under steady‐state harmonic excitation in the operating state and compared with the identified results by a free decay method and the theoretical values. The results experimentally confirm the correctness of the aerodynamic damping matrix theory under uniform wind and the feasibility of the improved identification method in practice.
- Research Article
- 10.3390/universe10110417
- Nov 7, 2024
- Universe
- Maria O Riazantseva + 5 more
The study aims to understand the role of solar wind current sheets (CSs) in shaping the spectrum of turbulent fluctuations and driving dissipation processes in space plasma. Local non-adiabatic heating and acceleration of charged particles in the solar wind is one of the most intriguing challenges in space physics. Leading theories attribute these effects to turbulent heating, often associated with magnetic reconnection at small-scale coherent structures in the solar wind, such as CSs and flux ropes. We identify CSs observed at 1 AU in different types of the solar wind around and within an interplanetary coronal mass ejection (ICME) and analyze the corresponding characteristics of the turbulent cascade. It is found that the spectra of fluctuations of the interplanetary magnetic field may be reshaped due to the CS impact potentially leading to local disruptions in energy transfer along the cascade of turbulent fluctuations. Case studies of the spectra behavior at the peak of the CS number show their steepening at MHD scales, flattening at kinetic scales, and merging of the spectra into a single form, with the break almost disappearing. In the broader vicinity of the CS number peak, the behavior of spectral parameters changes sharply, but not always following the same pattern. The statistical analysis shows a clear correlation between the break frequency and the CS number. These results are consistent with the picture of turbulent reconnection at CSs. The CS occurrence is found to be statistically linked with the increased temperature. In the ICME sheath, there are two CS populations observed in the hottest and coldest plasma.
- Research Article
- 10.1051/0004-6361/202450544
- Nov 1, 2024
- Astronomy & Astrophysics
- Martin Sparre + 2 more
Simulations and observations have found long tails in ‘jellyfish galaxies’, which are commonly thought to originate from ram-pressure stripped gas of the interstellar medium (ISM) in the immediate galactic wake. At larger distances from the galaxy, the long tails have been claimed to form in situ, owing to thermal instability and fast radiative cooling of mixed ISM and intracluster medium (ICM). In this paper, we use magnetohydrodynamical wind tunnel simulations of a galaxy with the AREPO code to study the origin of gas in the tails of jellyfish galaxies. To this end, we modelled the galaxy orbit in a cluster by accounting for a time-varying galaxy velocity, ICM density, and the turbulent magnetic field. By tracking gas flows between the ISM, the circumgalactic medium (CGM), and the ICM, we find – contrary to popular opinion – that the majority of the gas in the tail originates in the CGM. Prior to the central passage of the jellyfish galaxy in the cluster, the CGM is directly transported to the clumpy jellyfish tail that has been shattered into small cloudlets. After the central cluster passage, gas in the tail originates both from the initial ISM and the CGM, but that from the latter is accreted onto the galactic ISM before being ram-pressure stripped to form filamentary tentacles in the tail. Our simulation shows a declining gas metallicity in the tail as a function of downstream distance from the galaxy. We conclude that the CGM plays an important role in shaping the tails of jellyfish galaxies.
- Research Article
3
- 10.3847/1538-4357/ad6608
- Nov 1, 2024
- The Astrophysical Journal
- C Ashall + 41 more
We present a JWST MIRI medium-resolution spectrometer spectrum (5–27 μm) of the Type Ia supernova (SN Ia) SN 2021aefx at +415 days past B-band maximum. The spectrum, which was obtained during the iron-dominated nebular phase, has been analyzed in combination with previous JWST observations of SN 2021aefx to provide the first JWST time series analysis of an SN Ia. We find that the temporal evolution of the [Co iii] 11.888 μm feature directly traces the decay of 56Co. The spectra, line profiles, and their evolution are analyzed with off-center delayed-detonation models. Best fits were obtained with white dwarf (WD) central densities of ρ c = 0.9−1.1 × 109 g cm−3, a WD mass of M WD = 1.33–1.35 M ⊙, a WD magnetic field of ≈106 G, and an off-center deflagration-to-detonation transition at ≈0.5 M ⊙ seen opposite to the line of sight of the observer (−30°). The inner electron capture core is dominated by energy deposition from γ-rays, whereas a broader region is dominated by positron deposition, placing SN 2021aefx at +415 days in the transitional phase of the evolution to the positron-dominated regime. The formerly “flat-tilted” profile at 9 μm now has a significant contribution from [Ni iv], [Fe ii], and [Fe iii] and less from [Ar iii], which alters the shape of the feature as positrons mostly excite the low-velocity Ar. Overall, the strength of the stable Ni features in the spectrum is dominated by positron transport rather than the Ni mass. Based on multidimensional models, our analysis is consistent with a single-spot, close-to-central ignition with an indication of a preexisting turbulent velocity field and excludes a multiple-spot, off-center ignition.
- Research Article
1
- 10.1063/5.0239163
- Nov 1, 2024
- Physics of Fluids
- Gurpreet S Hora + 3 more
Obtaining accurate and dense three-dimensional estimates of turbulent wall-bounded flows is notoriously challenging, and this limitation negatively impacts geophysical and engineering applications, such as weather forecasting, climate predictions, air quality monitoring, and flow control. This study introduces a physics-informed variational autoencoder model that reconstructs realizable three-dimensional turbulent velocity fields from two-dimensional planar measurements thereof. Physics knowledge is introduced as soft and hard constraints in the loss term and network architecture, respectively, to enhance model robustness and leverage inductive biases alongside observational ones. The performance of the proposed framework is examined in a turbulent open-channel flow application at friction Reynolds number Reτ=250. The model excels in precisely reconstructing the dynamic flow patterns at any given time and location, including turbulent coherent structures, while also providing accurate time- and spatially-averaged flow statistics. The model outperforms state-of-the-art classical approaches for flow reconstruction such as the linear stochastic estimation method. Physical constraints provide a modest but discernible improvement in the prediction of small-scale flow structures and maintain better consistency with the fundamental equations governing the system when compared to a purely data-driven approach.
- Research Article
- 10.1088/1742-6596/2882/1/012099
- Nov 1, 2024
- Journal of Physics: Conference Series
- Jikui Ma + 3 more
Abstract Hypersonic separated flow induced by the protrusions is one of the most concerning research studies in aerodynamics due to the complex flow structure and the significance of engineering. An experimental study of three-dimensional hyper-sonic separated flow induced by the blunt fins is investigated. The tests are performed with inflow Mach number 6. The main flow properties of the shock systems are described by analyzing Schlieren photographs. The heat flux data are obtained by using high precision platinum film sensors. The effects of the fin sweep angle are also presented. Results show that the maximum heat flux decreases, and the range of the separation zone quickly reduces as the swept angle increases. Low-frequency oscillations of separated flow fields are analyzed through instantaneous heat flux signals at typical measuring points. It is shown that characteristic frequencies of shock wave oscillation with no rear sweep angle is about 1 k Hz.
- Research Article
- 10.1063/5.0237797
- Nov 1, 2024
- Physics of Fluids
- Tomoya Oura + 1 more
We propose a defiltering method of turbulent flow fields for Lagrangian particle tracking using machine learning techniques. Numerical simulation of Lagrangian particle tracking is commonly used in various fields. In general, practical applications require an affordable grid size due to the limitation of computational resources; for instance, a large-eddy simulation reduces the number of grid points with a filtering operator. However, low resolution flow fields usually underestimate the fluctuations of particle velocity. We thus present a novel approach to defilter the fluid velocity to improve the particle motion in coarse-grid (i.e., filtered) fields. The proposed method, which is based on the machine learning techniques, intends to reconstruct the fluid velocity at a particle location. We assess this method in a priori manner using a turbulent channel flow at the friction Reynolds number Reτ=180. The investigation is conducted for the filter size, nfilter, of 4, 8, and 16. In the case of nfilter=4, the proposed method can perfectly reconstruct the fluid velocity fluctuations. The results of nfilter=8 and 16 also exhibit substantial improvements in the fluctuation statistics although with some underestimations. Subsequently, the particle motion computed using the present method is analyzed. The trajectories, the velocity fluctuations, and the deposition velocity of particles are reconstructed accurately. Moreover, the generalizability of the present method is also demonstrated using the fields whose computational domain is larger than that used for the training. The present findings suggest that machine learning-based velocity reconstruction will enable us precise particle tracking in coarse-grid flow fields.
- Research Article
1
- 10.1063/5.0235192
- Nov 1, 2024
- Physics of Fluids
- Hesam Tofighian + 2 more
Super-resolution reconstruction of turbulent flows using deep learning has gained significant attention, yet challenges remain in accurately capturing physical small-scale structures. This study introduces the Conditional Enhanced Super-Resolution Generative Adversarial Network (CESRGAN) for reconstructing high-resolution turbulent velocity fields from low-resolution inputs. CESRGAN consists of a conditional discriminator and a conditional generator, the latter being called CoGEN. CoGEN incorporates subgrid-scale (SGS) turbulence kinetic energy as conditional information, improving the recovery of small-scale turbulent structures with the desired level of energy. By being aware of SGS turbulence kinetic energy, CoGEN is relatively insensitive to the degree of detail in the input. As shown in the paper, its advantages become more pronounced when the model is applied to heavily filtered input. We evaluate the model using direct numerical simulation (DNS) data of forced homogeneous isotropic turbulence. The analysis of Q-criterion isosurfaces, energy spectra, and probability density functions shows that the proposed CoGEN reconstructs fine-scale vortical structures more precisely and captures turbulent intermittency better compared to the traditional generator. Particle-pair dispersion simulations validate the physical fidelity of CoGEN-reconstructed fields, closely matching DNS results across various Stokes numbers and filtering levels. This paper demonstrates how incorporating available physical information enhances super-resolution models for turbulent flows.
- Research Article
3
- 10.3390/fire7110398
- Oct 31, 2024
- Fire
- Manolis Baglatzis + 3 more
Refineries are industrial complexes of great economic importance which are located close to major cities. A pool fire accident that can occur from an oil leak combined with wind can result in disastrous consequences for such an industry. This study investigates the characteristics of an isolated n-heptane square pool fire of 36 m2 under the influence of a cross wind. The pool fire characteristics are numerically studied using open-source Computational Fluid Dynamics (CFD) software, such as FireFoam (v4.1) and Fire Dynamic Simulator (FDS) (version 6.9.0). The turbulent flow field and the fire characteristics were simulated with the LES Method. The crucial parameters of the pool fire, such as (a) the temperature and velocity fields, (b) the flame length and height, (c) the surface emissive power, and (d) the flame tilt angles, were computed. Comparisons against experimental data for both small and large-area pool fires from the literature were made successfully. The flame tilt angle is shown to correlate very well with the reciprocal of the Richardson number, which was approximated within a multiplication constant to the Froude number. Thus, both the reciprocal Richardson number and Froude number can be used for correlating the flame tilt angle. It is shown that both of these numbers are used to correlate the tilt angle of experimental pool fires with effective diameters from a fraction of a meter to approximately 16 m, and wind speeds up to 7 m/s. The goodness of a linear fit based on the sum of the residual squares is 0.91.
- Research Article
2
- 10.1051/0004-6361/202450892
- Oct 29, 2024
- Astronomy & Astrophysics
- E De Rubeis + 6 more
Context. Radio relics are diffuse, non-thermal radio sources present in a number of merging galaxy clusters. They are characterized by elongated arc-like shapes and highly polarized emission (up to ∼60%) at gigahertz frequencies, and are expected to trace shock waves in the cluster outskirts induced by galaxy cluster mergers. Their polarized emission can be used to study the magnetic field properties of the host cluster. Aims. In this paper, we investigate the polarization properties of the double radio relics in PSZ2 G096.88+24.18 using the rotation measure (RM) synthesis, and try to constrain the characteristics of the magnetic field that reproduce the observed depolarization as a function of resolution (beam depolarization). Our aim is to understand the nature of the low polarization fraction that characterizes the southern relic with respect to the northern relic. Methods. We present new 1–2 GHz Karl G. Jansky Very Large Array (VLA) observations in multiple configurations. We derived the RM and polarization of the two relics by applying the RM synthesis technique, and thus solved for bandwidth depolarization in the wide observing bandwidth. To study the effect of beam depolarization, we degraded the image resolution and studied the decreasing trend of polarization fraction with increasing beam size. Finally, we performed 3D magnetic field simulations using multiple models for the magnetic field power spectrum over a wide range of scales, in order to constrain the characteristics of the cluster magnetic field that can reproduce the observed beam depolarization trend. Results. Using RM synthesis, we obtained a polarization fraction of (18.6 ± 0.3)% for the northern relic and (14.6 ± 0.1)% for the southern one. Having corrected for bandwidth depolarization, and after noticing the absence of relevant complex Faraday spectrum, we inferred that the nature of the depolarization for the southern relic is external, and possibly related to the turbulent gas distribution within the cluster, or to the complex spatial structure of the relic. The best-fit magnetic field power spectrum, which reproduces the observed depolarization trend for the southern relic, was obtained for a turbulent magnetic field model, described by a power spectrum derived from cosmological simulations, and defined within the scales of Λmin = 35 kpc and Λmax = 400 kpc. This yields an average magnetic field of the cluster within 1 Mpc3 volume of ∼2 μG.
- Research Article
2
- 10.1093/mnras/stae2444
- Oct 26, 2024
- Monthly Notices of the Royal Astronomical Society
- Abraham C -L Chian + 3 more
ABSTRACT We report on the formation of a large magnetic coherent structure in a vortex expansion–contraction interval, resulting from the merger of two plasmoids driven by a supergranular vortex observed by Hinode in the quiet-Sun. Strong vortical flows at the interior of vortex boundary are detected by the localized regions of high values of the instantaneous vorticity deviation, and intense current sheets in the merging plasmoids are detected by the localized regions of high values of the local current deviation. The spatiotemporal evolution of the line-of-sight magnetic field, the horizontal electric current density, and the horizontal electromagnetic energy flux is investigated by elucidating the relation between velocity and magnetic fields in the photospheric plasma turbulence. A local and continuous amplification of magnetic field from 286 G to 591 G is detected at the centre of one merging plasmoid during the vortex expansion–contraction interval of 60 min. During the period of vortex contraction of 22.5 min, the line-of-sight magnetic field at the centre of plasmoid-1 (2) exhibits a steady decrease (increase), respectively, indicating a steady transfer of magnetic flux from plasmoid-1 to plasmoid-2. At the end of the vortex expansion–contraction interval, the two merging plasmoids reach an equipartition of electromagnetic energy flux, leading to the formation of an elongated magnetic coherent structure encircled by a shell of intense current sheets. Evidence of the disruption of a thin current sheet at the turbulent interface boundary layers of two merging plasmoids is presented.