The micro-pressure waves (MPW) released from maglev tunnel portals can generate audible sonic booms and cause structural resonance in surrounding buildings, posing challenges to developing high-speed maglev trains. This paper proposes a novel porous media hood (PMH) and investigates its mechanism for mitigating the sonic booms emitted from tunnels. The numerical model employs the improved delayed detached eddy simulation turbulence model and overset grid technology, validated against data from moving-model experiments. The influences of the PMH's inherent properties and geometric parameters on MPW, flow field evolution, and aerodynamic loads on the train body were comprehensively discussed. The research demonstrates that PMH effectively dampens the initial wavefront gradient at the entrance and reduces the MPW amplitude by intensifying radiation within its exit vicinity. The porosity of 0.2 facilitates a seamless transition for the streamlined head from the ventilated PMH to the airtight tunnel. Lengthening the PMH enhances its MPW mitigation effect, whereas the impact of PMH thickness is minor. The PMH effectively diminishes the reflection intensity of compression and expansion waves at the tunnel ends, leading to a reduction in the magnitude and changing rate of train aerodynamic loads. This underscores the PMH's potential to enhance passengers' auditory comfort and alleviate issues related to train sway.
Read full abstract