Microplastic pollution in the ocean is a major problem, as its pervasiveness elicits concerns the health impacts microplastics may have on marine life (such as reef-building corals). As a primary endpoint, the organismal lipidome can define the weakening of fitness and reveal the physiological context of adverse health effects in organisms. To gain insight into the effects of microplastics on coral health, lipid profiling was performed via an untargeted lipidomic approach on the coral Turbinaria mesenterina exposed to ~10 μm polystyrene microparticles for 10 days. Considerable microplastic accumulation and obvious effects relating with immune activation were observed in the coral treated with a near environmentally relevant concentration of microplastics (10 μg/L); however, these effects were not evident in the high level (100 μg/L) treatment group. In particular, increased levels of membrane lipids with 20:4 and 22:6 fatty acid chains reallocated from the triacylglycerol pool were observed in coral host cells and symbiotic algae, respectively, which could upregulate immune activity and realign symbiotic communication in coral. High levels of polyunsaturation can sensitize the coral cell membrane to lipid peroxidation and increase cell death, which is of greater concern; additionally, the photoprotective capacity of symbiotic algae was compromised. As a result, coral physiological functions were altered. These results show that, realistic levels of microplastic pollution can affect coral health and should be a concern.
Read full abstract