Introduction We aimed to observe the effects of holmium:yttrium-aluminum-garnet (Ho:YAG) laser on testicular tissue. Methods An ex vivo experiment was conducted using calf testicles. A 100 W laser generator with broad-spectrum settings of 10-80 W, 20-40 Hz, and 0.5-2 J, with a medium pulse duration, was tested. The laser effects on testicular tissues with and without the tunica layer were evaluated histopathologically by calculating the incision depth (ID), vaporization area (VA), coagulation area (CA), and total laser area (TLA=VA+CA) of the specimens. Results A total of 48 experiments were conducted.In testicular tissue without a tunica layer, the highest mean ID was determined at 1 J-20 Hz (0.247±0.0208 mm) and with a tunica layer at 2 J-40 Hz (2.673±0.032 mm). In the testicular tissue without a tunica layer, the highest mean VA was determined at 1.5 J-40 Hz (0.029±0.0016 mm2)and in tissue with a tunica at 2 J-40 Hz (6.173±0.114 mm2). The highest mean TLA in tissue without a tunica was detected at 2 J-20 Hz (0.038±0.0008 mm2)and in tissue with a tunica at 2 J-40 Hz (7.292±0.07 mm2). The mean ID, VA, CA, and TLA values of all the power outputs used were found to be statistically significantly higher in the testicular tissue with the tunica layer than in that without it (p<0.001). Conclusion The Ho:YAG laser has different effects on testicular tissue with and without a tunica layer. In testicular tissue without a tunica, the laser's effect was minimal on the surrounding tissue, especially in terms of the ID, VA, and TLA.This minimal effect of the laser can be an advantage in testicular surgery procedures such as testis-sparing surgery (TSS) or testicular sperm extraction (TESE).