We present the basic operating principles of a traceable measurement system suitable for use with atomic force microscopes (AFMs) and nanometer-resolution displacement sensors. Our method is based upon a tunable external-cavity diode laser system which is servo-locked via a phase-modulated heterodyne locking technique to a Fabry-Perot interferometer cavity. We discuss mechanical considerations for the use of this cavity as a displacement metrology system and we describe methods for making real-time (sub 10 ms sampling period) measurements of the optical heterodyne signals. Our interferometer system produces a root-mean-squared (RMS) displacement measurement resolution of 20 pm. Two applications of the system are described. First, the system was used to examine known optical mixing errors in a heterodyne Michelson interferometer. Second, the Fabry-Perot interferometer was integrated into the Z axis of a commercial AFM scanning stage and used to produce interferometer-based images of a 17 nm step height specimen. We also demonstrate atomic resolution interferometer-based images of a 0.3 nm silicon single atomic step-terrace specimen.
Read full abstract