In this paper, we propose a method for cracking the key parameters of an electro-optic self-feedback temporal optical phase encryption system and experimentally demonstrate the feasibility of the scheme. By scanning a tunable dispersion compensation (TDC) module at the receiver, the time delay signature (TDS) of an encrypted signal can be exposed, making it possible to extract other key parameters of the system and reconstruct a decryption setup. The TDS characteristics for three typical modulation formats are investigated, revealing that while such an encryption system is secure against power detection attack, there is a risk of TDS leakage. The findings can guide the design of advanced optical encryption schemes with TDS suppression for security enhancement.