Heterodimers of metal nanoparticles are widely sought for applications in photonics, sensing, and catalysis. In this work, we demonstrate a general approach to the fabrication of heterodimers of metal nanoparticles by leveraging the concept of site-selected growth under the protection of an inert material. When styrene is polymerized in the presence of Au nanoparticles, the resultant polystyrene (PS) can be controlled to grow from only one portion of the surface of a nanoparticle. Free of PS, the remaining portion can serve as an active site for the heterogeneous nucleation and growth of the second metal. After dissolving the PS component, we obtain heterodimers of metal nanoparticles with tunable elemental compositions and controllable physical dimensions. The contact area between the two metals can also be maneuvered by adjusting the concentration of divinylbenzene used for copolymerization with styrene. Using this method, we have prepared Au-Ag, Au-Pd, and Au-Pt heterodimers and further investigated their plasmonic properties. The capability of this approach should be extendible to the fabrication of heterodimers with a broader range of compositions and properties.
Read full abstract