Research on the relationships between long non-coding RNAs (lncRNAs) and cancer is attractive and has progressed very rapidly. Necroptosis-related biomarkers can potentially be used for predicting the prognosis of cancer patients. This study aimed to establish a necroptosis-related lncRNA (NPlncRNA) signature to predict the prognosis of patients with bladder cancer (BCa). First, NPlncRNAs were identified using Pearson correlation analysis and machine learning algorithms, including SVM-RFE, least absolute shrinkage and selection operator (LASSO) regression, and random forest. The prognostic NPlncRNA signature was constructed using univariate and multivariate Cox regression analyses and the diagnostic efficacy and clinically predictive efficiency were evaluated and validated. The biological functions of the signature were analysed using gene set enrichment analysis (GSEA) and functional enrichment analysis. We further integrated the RNA-seq dataset (GSE133624) with our outcomes to reveal the crucial NPlncRNA that was functionally verified by assessing cell viability, proliferation, and apoptosis in BCa cells. The prognostic NPlncRNAs signature was composed of PTOV1-AS2, AC083862.2, MAFG-DT, AC074117.1, AL049840.3, and AC078778.1, and a risk score based on this signature was proven to be an independent prognostic factor for the BCa patients, indicated by poor overall survival (OS) of patients in the high-risk group. Additionally, the NPlncRNAs signature had a higher diagnostic validity than that of other clinicopathological variables, with a greater area under the receptor operating characteristic and concordance index curves. A nomogram established by integrating clinical variables and risk score confirmed that the signature can accurately predict the OS of patients and has high clinical practicability. Functional enrichment analysis and GSEA revealed that some cancer-related and necroptosis-related pathways were enriched in high-risk groups. The crucial NPlncRNA MAFG-DT was associated with poor prognosis and was highly expressed in BCa cells. MAFG-DT silencing notably inhibited proliferation and enhanced apoptosis of BCa cells. A novel prognostic NPlncRNAs signature was identified in BCa in this study, which provides potential therapeutic targets among which MAFG-DT plays critical roles in the tumorigenesis of BCa.