Mg/N doped-carbon quantum dots (CQDs) with dual drug targeting and cell imaging properties was synthesized. Mg/N doped-CQDs synthesized by a hydrothermal method. Operating pyrolysis parameters such as temperature, time, and pH were optimized to achieve CQDs with high quantum yield (QY). This CQD applied in cellular imaging. For the first time, dual active targeting of Mg/N doped CQDs performed using folic acid and hyaluronic acid (CQD-FA-HA). Then, epirubicin (EPI) loaded on this nanocarrier as the final complex (CQD-FA-HA-EPI). Cytotoxicity analysis, cellular uptake, and cell photography performed for the complex on three cell lines, including 4T1, MCF-7, and CHO. In vivo studies were performed in BALB/c inbred female mice models bearing breast cancer. Characterization results showed the successful formation of Mg/N doped-CQDs with a high QY of 89.44%. In vitro drug release approved pH dependency of synthesized nanocarrier with a controlled release behavior. Cytotoxicity tests and cellular uptake results demonstrated increased toxicity and absorption into 4T1 and MCF-7 cell lines for targeted nanoparticles compared to free drug. In cell imaging, an increase in the entry of the complex into 4T1 and MCF-7 cells compared to free drug, confirmed the proper function of the synthesized complex. In vivo results indicated that the tumor volume of mice receiving CQD-FA-HA-EPI was the lowest among other studied groups, along with the lowest damage to the liver, spleen, and heart according to the histopathological analysis. Finally, CQD-FA-HA proposed as a novel platform with tumor targeting, drug carrier, and photoluminescence properties.