Radioiodine is a routine therapy for differentiated thyroid cancers. Non-thyroid cancers may be treated with radio-iodine following transfection with the human sodium/iodide symporter (hNIS) gene. The glial fibrillary acidic protein (GFAP) promoter is an effective tumor-specific promoter for gene expression and thus may be useful in targeted gene therapy of malignant glioma. The present study used GFAP promoter-modulated expression of the hNIS gene in an experimental model of radioiodine-based treatment for malignant glioma. Cells were transfected using a recombination adeno-virus and evaluated in cells by studying the transfected transgene expression through western blot analysis, 125I uptake and efflux, clonogenicity following 131I treatment and radioiodine therapy using a U87 xenograft nude mouse model. Following transfection with the hNIS gene, the cells showed 95–70-fold higher 125I uptake compared with the control cells transfected with Ad-cytomegalovirus (CMV)-enhanced green fluorescent protein (EGFP). The western blotting revealed bands of ∼70, 49 and 43 kDa, consistent with the hNIS, GFAP and β-actin proteins. The clonogenic assay indicated that, following exposure to 500 μCi of 131I-iodide for 12 h, >90% of cells transfected with the hNIS gene were killed. Ad-GFAP-hNIS-transfected and 2 mCi 131I-injected U87 xenograft nude mice survived the longest of the three groups. The hNIS-expressing tumor tissue accumulated 99mTcO4 rapidly within 30 min of it being intraperitoneally injected. The experiments demonstrated that effective 131I therapy was achieved in the malignant glioma cell lines following the induction of tumor-specific iodide uptake activity by GFAP promoter-directed hNIS gene expression in vitro and in vivo. 131I therapy retarded Ad-GFAP-hNIS transfected-tumor growth following injection with 131I in U87 xenograft-bearing nude mice.
Read full abstract