Tumor mRNA vaccines have been identified as a promising technology for cancer therapy in multiple cancer types, while their efficacy in thyroid cancer (THCA) is unclear. Immunotyping is strongly associated with the immune microenvironment and immune status in cancer, thus it is important in vaccination and therapeutic response. This study is to identify potential valuable antigens and novel immune subtypes of THCA for immune landscape construction, thus screening patients suitable for mRNA vaccination. The clinical information and gene expression files of 568 THCA cases were obtained from the TCGA dataset. The DNA copy number variation and the somatic mutation of THCA were visualized by the cBioPortal database. TIMER was used to investigate the immune infiltrating correlation with candidate antigens. Consensus clustering analysis was conducted to cluster data using the ConsensusClusterPlus package. The immune landscapes of THCA patients were visualized using the Monocle package. The critical hub genes for THCA mRNA vaccines were identified by WGCNA package. To validate, the immunohistochemistry and real-time quantitative PCR (RT-qPCR) were performed to detect the expression level of potential antigen for mRNA vaccine in tissue and cell lines in THCA. Thymidine kinase 1 (TK1) was identified as a potential biomarker of mRNA vaccine against THCA. It was confirmed to be significantly upregulated in THCA tissues and cells lines. Moreover, three novel immune subtypes of THCA were obtained based on the expression consistency of immune-associated genes. The S2 subtype was characterized as an immunological "cold" phenotype with a high expression of immunogenic cell death modulators. S1 and S3 subtypes were immunological "hot" phenotypes with immune checkpoints upregulation. Further, the immune landscape of THCA patients was visualized and ten hub genes for mRNA vaccines were identified. TK1 was a tumor-specific antigen of mRNA vaccines. The patients belonging to the S2 subtype ("cold" tumor) were suitable for mRNA vaccine therapy in THCA. Notably, ten hub genes were conducted as potential biomarkers for identifying suitable patients for mRNA vaccination. These findings provided novel insights into mRNA vaccine development against THCA.
Read full abstract