Pathological diagnosis is considered the gold standard in cancer diagnosis, playing a crucial role in guiding treatment decisions and prognosis assessment for patients. However, achieving accurate diagnosis of pathology images poses several challenges, including the scarcity of pathologists and the inherent subjective variability in their interpretations. The advancements in whole-slide imaging technology and deep learning methods provide new opportunities for digital pathology, especially in low-resource settings, by enabling effective pathological image classification. In this article, we begin by introducing the datasets, which include both unimodal and multimodal types, as essential resources for advancing pathological image classification. We then provide a comprehensive overview of deep learning-based pathological image classification models, covering task-specific models such as supervised, unsupervised, weakly supervised, and semi-supervised learning methods, as well as unimodal and multimodal foundation models. Next, we review tumor-related indicators that can be predicted from pathological images, focusing on two main categories: indicators that can be recognized by pathologists, such as tumor classification, grading, and region recognition; and those that cannot be recognized by pathologists, including molecular subtype prediction, tumor origin prediction, biomarker prediction, and survival prediction. Finally, we summarize the key challenges in digital pathology and propose potential future directions.
Read full abstract