We aimed to develop a multi-modality model to predict axillary lymph node (ALN) metastasis by combining clinical predictors with radiomic features from magnetic resonance imaging (MRI) and mammography (MMG) in breast cancer. This model might potentially eliminate unnecessary axillary surgery in cases without ALN metastasis, thereby minimizing surgery-related complications. We retrospectively enrolled 485 breast cancer patients from two hospitals and extracted radiomics features from tumor and lymph node regions on MRI and MMG images. After feature selection, three random forest models were built using the retained features, respectively. Significant clinical factors were integrated with these radiomics models to construct a multi-modality model. The multi-modality model was compared to radiologists' diagnoses on axillary ultrasound and MRI. It was also used to assist radiologists in making a secondary diagnosis on MRI. The multi-modality model showed superior performance with AUCs of 0.964 in the training cohort, 0.916 in the internal validation cohort, and 0.892 in the external validation cohort. It surpassed single-modality models and radiologists' ALN diagnosis on MRI and axillary ultrasound in all validation cohorts. Additionally, the multi-modality model improved radiologists' MRI-based ALN diagnostic ability, increasing the average accuracy from 70.70 to 78.16% for radiologist A and from 75.42 to 81.38% for radiologist B. The multi-modality model can predict ALN metastasis of breast cancer accurately. Moreover, the artificial intelligence (AI) model also assisted the radiologists to improve their diagnostic ability on MRI. The multi-modality model based on both MRI and mammography images allows preoperative prediction of axillary lymph node metastasis in breast cancer patients. With the assistance of the model, the diagnostic efficacy of radiologists can be further improved. • We developed a novel multi-modality model that combines MRI and mammography radiomics with clinical factors to accurately predict axillary lymph node (ALN) metastasis, which has not been previously reported. • Our multi-modality model outperformed both the radiologists' ALN diagnosis based on MRI and axillary ultrasound, as well as single-modality radiomics models based on MRI or mammography. • The multi-modality model can serve as a potential decision support tool to improve the radiologists' ALN diagnosis on MRI.
Read full abstract