Abstract The Tucano and Sergipe-Alagoas basins of northeast Brazil form part of a regional extensional basin system that was operative during the Mesozoic breakup of South America and Africa with both basins developing on Precambrian crust. The synchronous development of the rift basins suggest that they are genetically linked in space and time. Whereas the offshore Sergipe-Alagoas basin is characterized by a substantial thickness of post-rift sediment, the Tucano basin either failed to develop or at least preserve a significant thickness of post-rift sediment. Observed primary porosities within both pre- and syn-rift Tucano basin sediment imply that significant post-rift sedimentation never occurred. Failure to develop significant post-rift subsidence has important thermal and mechanical implications for the reaction of the lithosphere to rifting and can be explained in terms of: (1) depth-dependent lithospheric extension in which intracrustal detachments allow the extension of the crust to be decoupled from the thinning of the lithospheric mantle, (2) small rates of extension that allow the lithosphere to cool during rifting, and/or (3) lithospheric rifting during which the flexural strength of the lithosphere remains high. With respect to points (2) and (3), forward modeling demonstrates that finite rifting rates over a 20–25 m.y. period are insufficient to cool the lithosphere to the point where post-rift subsidence fails to develop. An interesting complication arises when the flexural strength of the lithosphere remains large during rifting: it tends to suppress the vertical motions of the lithosphere, such as those engendered by the cooling of the lithosphere following rifting, thereby reducing significantly the amplitude of the post-rift subsidence. Thus, the lack of post-rift sedimentation within a basin does not necessarily imply that extension has been limited to the crust. From our kinematic modeling of the Tucano basin, the observed negative free-air and Bouguer gravity anomalies (− 120 mGals) suggest that the flexural strength of the lithosphere has remained sufficiently large to maintain the load of the sediment. We can model successfully the observed Tucano basin architecture and gravity anomaly irrespective of whether we assume depth-dependent or depth-independent lithospheric extension primarily because the flexural strength of the lithosphere tends to “buffer” or suppress the amplitude of the post-rift subsidence. In contrast, the adjacent Sergipe-Alagoas basin is associated with low-amplitude gravity anomalies which may reflect a resetting of flexural strength during rifting. Prior to rifting, however, there was no appreciable elevation difference between the Tucano and Sergipe-Alagoas regions (as might be induced by a hot-spot for example) implying that the flexural strength of the lithosphere was similar. The total thickness of the syn- and post-rift sediments within the Sergipe-Alagoas basin is about the same as the thickness of rift-phase sediments in the Tucano basin. Thus, the amount of crustal extension responsible for each basin was similar. However, since the Sergipe-Alagoas basin contains 4–5 km of post-rift sediments, lithospheric mantle thinning in this region must have been significantly greater than the crustal extension to overcome the effects of “flexural bufferring”. The need for lithospheric mantle thinning to be greater that crustal extension in the Sergipe-Alagoas region was also a result obtained by modeling the development of the ocean/continent boundary between Brazil and Africa. From our coupled kinematic and rheological model of lithospheric extension, we predict that the ocean/continent boundary should form preferentially at the location of greatest crustal and lithospheric mantle thinning, that is, within the region of maximum depth-independent lithospheric extension. The ocean/continent boundary formed east of the Sergipe-Alagoas basin despite the fact that the Tucano basin represents the region of greatest crustal thinning. If extension had been uniform with depth beneath these basins, the ocean/continent boundary should have formed in the Tucano basin. As it did not, some form of intracrustal detachment appears to have been operative to reduce lithospheric mantle thinning beneath the Tucano basin while enhancing it beneath the offshore regions of the Sergipe-Alagoas basin.
Read full abstract