Early embryos of the clitellate annelid Tubifex (oligochaete) undergo a series of unequal spiral cell divisions before the descendants of the D quadrant micromeres (cells 2d and 4d) divide bilaterally. Here, we show that inhibition of zygotic transcription by microinjection of α-amanitin (transcription inhibitor) exclusively converts unequal cleavage in cell 2d11 (granddaughter of 2d) into equal cleavage while other unequal cleavages and ensuing bilateral cleavages in cells 4d and 2d111 (great-granddaughter of 2d) all proceed in a normal fashion in the presence of this inhibitor. These results differ significantly from those reported for embryos of another clitellate annelid Helobdella (leech), in which inhibition of transcription converts bilateral (symmetric) cleavages in cells DNOPQ"' and DM" (equivalent to 2d111 and 4d) into unequal (asymmetric) cleavages while having no apparent effect on unequal cleavage in DNOPQ" (equivalent to 2d11). These differences imply distinct mechanisms for the control of the unequal-to-bilateral transition in the two clitellate annelids.