BackgroundTuberculosis (TB) continues to be a major cause of morbidity and mortality worldwide. However, the molecular mechanism underlying immune response to human infection with Mycobacterium tuberculosis (Mtb) remains unclear. Assessing changes in transcript abundance in blood between health and disease on a genome-wide scale affords a comprehensive view of the impact of Mtb infection on the host defense and a reliable way to identify novel TB biomarkers. MethodsWe combined expression profiling by array and single cell RNA-sequencing (scRNA-seq) via 10X Genomics platform to better illustrate the immuno-related transcriptional signature of TB and explore potential diagnostic markers for differentiating TB from latent tuberculosis infection (LTBI) and healthy control (HC). FindingsPathway analysis based on differential expressed genes (DEGs) revealed that immune transcriptional profiling could effectively differ TB with LTBI and HC. Following WGCNA and PPI network analysis based on DEGs, we screened out three key immuno-related hub genes (ADM, IFIT3 and SERPING1) highly associated with TB. Further validation found only ADM expression significantly increased in TB patients in both adult and children's datasets. By comparing the scRNA-seq datasets from TB, LTBI and HC, we observed a remarkable elevated expression level and proportion of ADM in TB Myeloid cells, further supporting that ADM expression changes could distinguish patients with TB from LTBI and HC. Besides, the hsa-miR-24–3p-NEAT1-ADM-CEBPB regulation pathway might be one of the critical networks regulating the pathogenesis of TB. Although further investigation in a larger cohort is warranted, we provide useful and novel insight to explore the potential candidate genes for TB diagnosis and intervention. InterpretationWe propose that the expression of ADM in peripheral blood could be used as a novel biomarker for differentiating TB with LTBI and HC.