The effects of normal and altered intestinal microbiota on murine retroviral transmission via the gastrointestinal tract (GIT) are diverse. The role of orally administered antibiotic treatment (ABX) on viral transmission, GIT microbial dysbiosis and subsequent pathogenesis of Moloney Murine Leukemia virus-temperature sensitive 1 (ts1) on BALB/c mice were studied. BALB/c mice were divided into four groups: ABXts1-Treatment/Infection;ABX-Treatment/No infection;ts1-No treatment/Infection;Ctrl (control)-No treatment/No infection. ABXts1 and ABX groups showed a significant phylogenetic shift (ANOSIM p-value = 0.001) in alpha and beta diversity comparisons for microbial community composition compared to Ctrl group. Mice in the ABXts1 and ABX groups showed megacolon compared to ts1 and Ctrl groups; ABXts1 and ts1 groups showed hepatosplenomegaly, thymus enlargement, and mesenteric lymphadenopathy compared to ABX and Ctrl groups. Ctrl group had no abnormal manifestations. ABX treatment and ts1 infection uniquely affect microbial community when compared to control: ABXts1 and ABX groups significantly reduce microbiome diversity by over 80% and ts1 group by over 30%. ABXts1 and ts1 groups' viral load and clinical manifestations of infection were comparable; antibiotic treatment did not notably affect ts1 infection. Transmission and pathophysiology of ts1 infection were not significantly altered by the microbial composition of the GI tract, but ts1 viral infection did result in microbial dysbiosis independent of antibiotic treatment.
Read full abstract