Securing communications in drone networks is an essential aspect of ensuring good network performance. Data transferred over the Internet of Drones (IoD) Communications, which is rapidly growing, holds crucial information for navigation, coordination, data sharing, and control, and enables the creation of smart services in many sectors. Sixth-generation (6G) mobile systems are anticipated to be impacted by the plethora of IoD. The possibility of malevolent drones intercepting or altering data before it reaches its target is a serious worry. Operations on IoD networks may be hampered by this, and safety issues may arise. Utilizing three security levels, the suggested method solves the issue of malicious drones in the IoD network. The suggested system’s first level allocates a trust value to IoD drones based on behaviors including prior drone behavioral histories, packet losses, and processing delays. This can be accomplished by choosing drones as investigators to monitor the actions of neighboring drones and assess the level of trust value. The second level involves communication protection, which is accomplished by historical communication behavior. The purpose of the final security level is to safeguard the reliability of the data used to calculate trust values. The fundamental topical of our proposed system is to propose and explore a novel tactic for detecting malicious UAVs within the internet of drone framework, using theoretical and simulations models. Because that 6G networks are still now in the developmental stage, the results presented are based on predictive analyses and simulations rather than real-world applications.
Read full abstract