The limitations of the existing catapults necessitate multiple batches of take-offs for carrier-based unmanned aerial vehicles (UAVs) to form a formation. Because of the differences in takeoff time and location of each batch of UAVs, ensuring the temporal and spatial consistency and rendezvous efficiency of the formation becomes crucial. Concerning the challenges mentioned above, a multi-batch formation rendezvous method based on improved sequential convex programming (SCP) is proposed. A reverse solution approach based on the multi-batch rendezvous process is developed. On this basis, a non-convex optimization problem is formulated considering the following constraints: UAV dynamics, collision avoidance, obstacle avoidance, and formation consistency. An SCP method that makes use of the trust region strategy is introduced to solve the problem efficiently. Due to the spatiotemporal coupling characteristics of the rendezvous process, an inappropriate initial solution for SCP will inevitably reduce the rendezvous efficiency. Thus, an initial solution tolerance mechanism is introduced to improve the SCP. This mechanism follows the idea of simulated annealing, allowing the SCP to search for better reference solutions in a wider space. By utilizing the initial solution tolerance SCP (IST-SCP), the multi-batch formation rendezvous algorithm is developed correspondingly. Simulation results are obtained to verify the effectiveness and adaptability of the proposed method. IST-SCP reduces the rendezvous time from poor initial solutions without significantly increasing the computing time.