Upper limb motor paresis is a major symptom of stroke, which limits activities of daily living and compromises the quality of life. Kinematic analysis offers an in-depth and objective means to evaluate poststroke upper limb paresis, with anticipation for its effective application in clinical settings. This study aims to compare the movement strategies of patients with hemiparesis due to stroke and healthy individuals in forward reach and hand-to-mouth reach, using a simple methodology designed to quantify the contribution of various movement components to the reaching action. A 3D motion analysis was conducted, using a simplified marker set (placed at the mandible, the seventh cervical vertebra, acromion, lateral epicondyle of the humerus, metacarpophalangeal [MP] joint of the index finger, and greater trochanter of the femur). For the forward reach task, we measured the distance the index finger's MP joint traveled from its starting position to the forward target location on the anterior-posterior axis. For the hand-to-mouth reach task, the shortening of the vertical distance between the index finger MP joint and the position of the chin at the start of the measurement was measured. For both measurements, the contributions of relevant upper limb and trunk movements were calculated. A total of 20 healthy individuals and 10 patients with stroke participated in this study. In the forward reach task, the contribution of shoulder or elbow flexion was significantly smaller in participants with stroke than in healthy participants (mean 52.5%, SD 24.5% vs mean 85.2%, SD 4.5%; P<.001), whereas the contribution of trunk flexion was significantly larger in stroke participants than in healthy participants (mean 34.0%, SD 28.5% vs mean 3.0%, SD 2.8%; P<.001). In the hand-to-mouth reach task, the contribution of shoulder or elbow flexion was significantly smaller in participants with stroke than in healthy participants (mean 71.8%, SD 23.7% vs mean 90.7%, SD 11.8%; P=.009), whereas shoulder girdle elevation and shoulder abduction were significantly larger in participants with stroke than in healthy participants (mean 10.5%, SD 5.7% vs mean 6.5%, SD 3.0%; P=.02 and mean 16.5%, SD 18.7% vs mean 3.0%, SD 10.4%; P=.02, respectively). Compared with healthy participants, participants with stroke achieved a significantly greater distance via trunk flexion in the forward reach task and shoulder abduction and shoulder girdle elevation in the hand-to-mouth reach task, both of these differences are regarded as compensatory movements. Understanding the characteristics of individual motor strategies, such as dependence on compensatory movements, may contribute to tailored goal setting in stroke rehabilitation.