Body-borne load reportedly increases incidence of military-related knee injury by altering trunk and lower limb biomechanics. This investigation determined whether body-borne load impacts lateral trunk flexion during a single-leg cut, and whether greater lateral trunk flexion exaggerates knee abduction biomechanics. Thirty-six participants had trunk and knee biomechanics quantified during a single-leg cut with four body-borne loads (20, 25, 30 and 35[Formula: see text]kg). To evaluate the impact of load on lateral trunk flexion and its relation with knee abduction biomechanics, peak stance lateral trunk flexion was submitted to a linear mixed model with load (20, 25, 30, and 35[Formula: see text]kg) and sex (male, female) as fixed effects, and dominant limb peak stance knee abduction joint angle and moment considered as covariates. During the cut, there was a significant sex by load interaction for peak stance lateral trunk flexion ([Formula: see text]), and peak stance lateral trunk flexion angle exhibited a significant association with peak stance knee abduction angle ([Formula: see text]) and moment ([Formula: see text]). Adopting lateral trunk flexion during loaded single-leg cuts may increase knee biomechanics related to ACL injury, but adding load only decreased lateral trunk flexion for female participants and did not further exaggerate knee abduction biomechanics.