BackgroundThe lips are a vital component of the face and are densely innervated to perform various functions. The lip edges are covered with mucocutaneous tissue called vermilion which is particularly receptive to touch and temperature. The aim of this study was to investigate the somatosensory innervation of human lips, focusing on sensory corpuscles and the presence of mechano-gated (ASIC2, PIEZO2, and TRPV4) and thermosensing (TRPV1, TRPM2, and RPM8) ion channels within them. MethodsTwelve intact lips (6 upper and 6 lower) were obtained from non-embalmed frozen cadavers (five females and seven males) with an age range of 60–80 years. The specimens were divided into three zones (medial, lateral, and median). The morphotypes of sensory corpuscles and their immunohistochemical profile was analysed. The occurrence of ion channels involved in mechanosensation and temperature detection was examined using various antibodies. Sensory corpuscle density was quantified in vermilion sections, and statistical analyses were conducted to assess differences between the upper and lower lips, as well as between females and males (p < 0.05). ResultsDifferent morphotypes of sensory corpuscles were identified: Ruffini-like associated with hair follicles, Meissner and glomerular corpuscles in the vermilion, and less classifiable sensory corpuscles within the mucosa. The density of sensory corpuscles in the vermilion was higher in the upper lip than in the lower lip; glomerular corpuscles predominated in the medial and median segments, whereas Meissner corpuscles were more abundant in the lateral segment. No sex-related differences were observed in the density or distribution of the two main corpuscular morphotypes. In contrast, the axons of both the glomeruli and Meissner corpuscles regularly displayed ASIC2 and PIEZO2 immunoreactivity, whereas immunoreactivity for TRPV1, TRPV4, TRPM2, and TRPV8 was absent. ConclusionsThese results demonstrate that the sensory corpuscles of the vermilion are a mixture of those typical of glabrous skin mucocutaneous tissues. The presence of PIEZO2 and ASIC2 in their axons suggests that these sensory corpuscles function as mechanosensors.