We have investigated the association between tropical weather condition and age-sex adjusted death rates (ADR) in Thailand over a 10-year period from 1999 to 2008. Population, mortality, weather and air pollution data were obtained from four national databases. Alternating multivariable fractional polynomial (MFP) regression and stepwise multivariable linear regression analysis were used to sequentially build models of the associations between temperature variable and deaths, adjusted for the effects and interactions of age, sex, weather (6 variables), and air pollution (10 variables). The associations are explored and compared among three seasons (cold, hot and wet months) and four weather zones of Thailand (the North, Northeast, Central, and South regions). We found statistically significant associations between temperature and mortality in Thailand. The maximum temperature is the most important variable in predicting mortality. Overall, the association is nonlinear U-shape and 31°C is the minimum-mortality temperature in Thailand. The death rates increase when maximum temperature increase with the highest rates in the North and Central during hot months. The final equation used in this study allowed estimation of the impact of a 4°C increase in temperature as projected for Thailand by 2100; this analysis revealed that the heat-related deaths will increase more than the cold-related deaths avoided in the hot and wet months, and overall the net increase in expected mortality by region ranges from 5 to 13% unless preventive measures were adopted. Overall, these results are useful for health impact assessment for the present situation and future public health implication of global climate change for tropical Thailand.
Read full abstract