The effect of the Tibetan Plateau (TP) on the Intertropical Convergence Zone (ITCZ) was investigated using a coupled Earth system model. The location of the ITCZ (in this work represented by the center of the tropical precipitation maximum) over the tropical Atlantic was found to be sensitive to the existence of the TP. Removing the TP led to a remarkable sea surface temperature (SST) cooling (warming) in the Northern (Southern) Hemisphere, which manifested clearly in the Atlantic rather than the Pacific. The locations of maximum precipitation and SST moved southwards clearly in the tropical Atlantic, forcing a southward shift of the atmospheric convection center, and thus the ITCZ. The shift in the ITCZ was also supported by the latitudinal change in the ascending branch of the tropical Hadley Cell, which moved southwards by about 2° in the boreal summer in response to the TP's removal. From the viewpoint of the energy balance between the two hemispheres, the cooling (warming) in the Northern (Southern) Hemisphere requires an enhanced northward atmospheric heat transport across the equator, which can be realized by the southward displacement of the ITCZ. This study suggests that the presence of the TP may have played an important role in the climatology of the ITCZ, particularly its location over the tropical Atlantic.摘要本文利用耦合地球气候系统模式研究了青藏高原对热带辐合带 (ITCZ) 的影响. 我们研究发现热带大西洋ITCZ的位置对青藏高原存在与否有明显的敏感性. 与目前真实情况相比, 移除青藏高原会导致北半球海面降温, 南半球海面升温. 这种海面温度变化在大西洋表现得尤为明显, 导致热带大西洋最大海温中心向南移动, 从而迫使大气对流中心向南移动, 即表现为ITCZ的南移. 相应地, 夏季热带大气Hadley环流的上升支也发生明显南移. 北 (南) 半球海洋变冷 (变暖) 这种态势要求增强跨赤道向北的大气经向热量输送, 从而维持各个半球的能量平衡, 而这需要ITCZ位置的南移才能实现. 本文研究表明, 青藏高原的存在在现今ITCZ气候态的形成中可能扮演了重要角色.
Read full abstract