This paper compares the relative contributions of within-habitat diversity [alpha-diversity] and between-habitat-diversity [beta-diversity] to regional diversity [gamma-diversity] in marine benthic communities of the western US before and after the end-Permian mass extinction. We found that presumably cool-water faunas from the Permian Gerster Limestone and the Park City Formation had low alpha- and beta-diversities, comparable to those of low diverse faunas of the Early Triassic. In contrast, tropical Permian faunas had much higher alpha-diversities and a variable pattern of beta-diversity: Whereas faunas of space-limited bioherms show a positive correlation between beta-diversity and gamma-diversity, beta-diversity in level-bottom faunas is elevated only when gamma-diversity is very high (>250 species). This contrasting pattern probably reflects differential effects of interspecific competition on habitat partitioning. In low-competitive level-bottom faunas, species are able to coexist until competition forces species into their ecological optima, thereby increasing beta-diversity. This effect occurs at much lower gamma-diversities in more competitive reef-bound faunas, causing the observed positive correlation between beta- and gamma-diversity. We suggest that differences in the level of interspecific competition and hence diversity partitioning between Permian and Triassic benthic communities result from the higher average metabolic rates in the Mesozoic mollusc-dominated benthos in contrast to their Permian counterparts.
Read full abstract