In response to the intensification of global warming, extreme weather events, such as tropical cyclones (TCs) and cold waves (CWs) have become increasingly frequent near the eastern Guangdong coast, significantly affecting the structure and material transport of coastal waters. Based on nearshore-measured and remote sensing reanalysis data in the winter of 2011 and summer of 2012 on the eastern Guangdong coast, this study analyzed the nearshore hydrodynamic evolution process, influencing mechanism, and marine environmental effects under the influence of TCs and CWs, and further compared the similarities and differences between the two events. The results revealed significant seasonal variations in the hydrological and meteorological elements of the coastal waters, which were disrupted by the passage of TCs and CWs. The primary influencing factors were TC track and CW intensity. The current structure changed significantly during the TCs and CWs, with the TC destroying the original upwelling current and the CW affecting the prevailing northeastward current. Wind is one of the major forces driving nearshore hydrodynamic processes. According to the synchronous analysis of research data, the TC-induced water level rise is primarily attributed to the combined effects of wind stress curl and the Ekman effect, whereas the water level rise associated with CW is primarily linked to the Ekman effect. The water transport patterns during the TC and CW differed, with transport concentrated on the right side of the TC track and within the coastal strong-wind zones, respectively. Additionally, the temporal frequency domain of wavelet analysis highlighted the distinct nature of TC and CW signals, with 1–3 d and 4–8 d, respectively, and with TC signals being short-lived and rapid compared to the more sustained CW signals. This study enhances our understanding of the response of coastal hydrodynamics to extreme weather events on the eastern Guangdong coast, and the results can provide references for disaster management and protection of nearshore ocean engineering under extreme events.
Read full abstract