Porous organic cages (POCs) are a unique type of microporous materials composed of discrete molecules with internal cavities that are accessible to various compounds. In this study, a prismatic chiral POC with good thermochemical stability was synthesized by condensing (1R,2R)-diaminocyclohexane and 3,3',5,5'-teturonic-4,4'-biphenediol via the Schiff base reaction and characterized by proton nuclear magnetic resonance spectroscopy, infrared (IR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy. The IR spectrum of the POC revealed a strong characteristic absorption peak at 1635 cm-1, indicating that it formed imine bonds (C=N). The absorption peak at 3425 cm-1 was attributed to the stretching vibrations of -OH, the absorption peaks at 2925 and 2858 cm-1 were attributed to the stretching vibrations of N=C-H and C-H, and the absorption peaks at 1446 and 1383 cm-1 were attributed to the stretching vibrations of C=C-H and C=C in the benzene ring. High-resolution mass spectral analysis of the POC showed a molecular ion peak at m/z 1363.7228, indicating its successful synthesis. TGA was performed from 25 to 800 ℃ at a rate of 10 ℃/min, and the results of this analysis showed that the POC was stable up to approximately 300 ℃. The POC was dissolved in dichloromethane and uniformly coated on the inner wall of a quartz capillary via the dynamic coating method to prepare a capillary electrochromatographic column. The experimental results revealed that the chiral electrochromatographic column could not only resolve ofloxacin, Troger's base, 2-amino-1-butanol, and 1-phenyl-1-amyl alcohol but also separate the isomers of o-, m-, and p-toluidine and o-, m-, and p-chloroaniline, indicating its good chiral separation ability. Investigation of the optimal separation conditions for ofloxacin, Troger's base, 2-amino-1-butanol, and 1-phenyl-1-amyl alcohol revealed that the voltage, buffer solution concentration, and pH significantly affected their separation degree. In particular, the optimal separation voltage for ofloxacin, Troger's base, and 2-amino-1-butanol was 15 kV, while that for 1-phenyl-1-amyl alcohol was 17 kV. The optimal buffer concentration and pH for ofloxacin, Troger's base, 2-amino-1-butanol, and 1-phenyl-1-amyl alcohol were 0.100 mol/L and 7.5. Under optimal chromatographic conditions, the resolution values for ofloxacin, Troger's base, 2-amino-1-butanol, and 1-phenyl-1-pentanol were 1.80, 3.33, 1.69, and 1.18, respectively. The results collectively demonstrate that the prepared POC may serve as a good chiral stationary phase for capillary electrochromatography with a certain chiral resolution ability and has good application prospects in chromatographic separation.
Read full abstract