Abstract

Cuboid, a basic geometric structure, has been widely applied in architecture and mathematics. In chemistry, the introduction of cuboid structures always provides a specific structural shape, enhances the stability of the structure and improves the performance of materials. Herein, a simple strategy exploiting self-discrimination to construct a cuboid-stacking crystal material is proposed, in which a chiral macrocycle (TBBP) based on Tröger's base (TB) and benzophenone (BP) was synthesized as the building element of the cuboid. The cuboid is designed to be transformable compared with cuboid structures in previous work. For this reason, it is considered that the cuboid-stacking structure can be transformed through external stimulation. Iodine vapor is selected as the external stimulus to transform the cuboid-stacking structure due to the favorable interaction between iodine and the cuboid. The changes in the stacking mode of TBBP is studied by single-crystal X-ray diffraction (SCXRD) and powder X-ray diffraction (PXRD). To our surprise, this Tröger's base-based cuboid shows strong iodine adsorption capacity up to 3.43 g g-1 and exhibits potential as a crystal material for iodine adsorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call