Tropomyosin receptor kinase (TRK) fusion, an oncogenic form of kinase with pan-tumor occurrence, is a clinically validated important antitumor target. In this study, we screened our in-house kinase inhibitor library against TRK and identified a promising hit compound 4 with a novel pyridin-2(1H)-one scaffold. Through a combination of structure-based drug design and structure-activity relationship (SAR) study, compound 14q was identified as a potent TRK inhibitor with good kinase selectivity. It also blocked cellular TRK signaling, thereby inhibiting TRK-dependent cell viability. Additionally, 14q displayed acceptable pharmacokinetic properties with 37.8% oral bioavailability in mice. Strong in vivo tumor growth inhibition of 14q was observed in subcutaneous M091 and KM12 tumor xenograft models with TRK fusion, causing significant tumor inhibition or even complete tumor regression.