Zinc smelting wastewater contains high concentrations of Cd. Here, the treatment efficiency of Cd using electrodialysis was evaluated. In addition, scale accumulation of ion-exchange membrane (IEM) was analyzed, and fouling control was studied. The results showed that spacers effectively improved the limiting current density but accelerated foulant accumulation. The Cd-treatment efficiency improved to 85.4% without a spacer. Dissolved organic carbon (DOC) and hydrophobic DOC levels in diluted water decreased by 0.65 mg L−1 and 2.1 mg L−1, respectively; in contrast, hydrophilic DOC level increased by 1.45 mg L−1. Some of the hydrophobic DOC in the diluted water was converted to hydrophilic DOC and subsequently to low-molecular-weight (LMW) DOC. DOC level in the concentrated water did not change substantially, but the LMW fraction of the hydrophilic DOC increased. In the cation-exchange membrane, a material composed of calcium sulfate accumulated in the bottom layer, and hydroxides of divalent and trivalent ions accumulated on top of it. In contrast, the anion-exchange membrane was fouled by humic substances. In terms of fouling control, physical and acid cleaning of IEMs was more effective than the reversal operation.