Multi-resonance thermally activated delayed fluorescence (MR-TADF) molecules have experienced great success in organic light-emitting diodes (OLEDs) owing to their outstanding quantum efficiencies and narrow full width at half-maximums (FWHMs). However, the reverse intersystem crossing (RISC) rates of MR-TADF emitters are usually small, which will lead to relatively long triplet exciton lifetime and severe efficiency roll-off. Here, we report an effective molecular design strategy to introduce multichannel RISC pathways and thus increase RISC rates without compromising the color fidelity and emission efficiency by the "hybridized long-short axis (HLSA)" strategy. The TPA-CN-BN shows a near-unity photoluminescence quantum yield, rapid RISC rate of 1.4 × 105 s-1, narrow FWHM of 23 nm, and small singlet-triplet energy gap (ΔEST) of 0.06 eV in solution. The non-sensitized OLED based on TPA-CN-BN exhibits a narrowband emission with the FWHM of 31 nm, in company with external quantum efficiency (EQE) of 37.9%. Notably, the device exhibits the low efficiency roll-off as the EQEs maintain 34.8% and 21.8% at 100 and 1000 cd m-2, respectively, representing the best performance for single-host OLEDs based on the BCzBN skeleton. This study provides a fresh and promising approach to realize high-performance OLEDs with high color purity and remarkable device efficiency.