This communication aims to comprehensively elucidate the intricate mechanism governing the interaction between the excited triplet state of 4-Carboxybenzophenone (CB*) and the anionic form of 2-Naphthalene Sulfonate (NpSO3−), employing the 337 nm Nanosecond Laser Flash Photolysis technique for this investigation. When the CB is selectively excited by a 337 nm laser, two primary processes become possible: (i) energy transfer from 3CB* to NpSO3− and (ii) electron transfer from NpSO3− to 3CB*. The dynamics of these interactions are explored through experimental observations of transient absorption spectra and the analysis of respective kinetic traces. The primary process dominating in the 3(CB...NpSO3−)* system is identified as triplet energy transfer from excited 3CB* to 3(NpSO3−), as demonstrated by characteristic spectral features observed at 410–420 nm. Comparisons are made with a similar system studied by Yamaji and co-workers, 3(BP•−...NpO•)*, revealing differences in the priority of primary process occurrences. These findings contribute to a deeper understanding of the intricate interactions between excited molecules and ground-state donors, aiding in the comprehension of mechanisms governing these reactions.
Read full abstract