BackgroundThalamic abnormalities in schizophrenia are recognized, alongside cognitive deficits. However, the current findings about these abnormalities during the prodromal period remain relatively few and inconsistent. This study applied multimodal methods to explore the alterations in thalamic function and structure and their relationship with cognitive function in first-episode schizophrenia (FES) patients and ultra-high-risk (UHR) individuals, aiming to affirm the thalamus's role in schizophrenia development and cognitive deficits. Methods75 FES patients, 60 UHR individuals, and 60 healthy controls (HC) were recruited. Among the three groups, gray matter volume (GMV) and functional connectivity (FC) were evaluated to reflect the structural and functional abnormalities in the thalamus. Pearson correlation was used to calculate the association between these abnormalities and cognitive impairments. ResultsNo significant difference in GMV of the thalamus was found among the abovementioned three groups. Compared with HC individuals, FES patients had decreased thalamocortical FC mostly in the thalamocortical triple network, including the default mode network (DMN), salience network (SN), and executive control network (ECN). UHR individuals had similar but milder dysconnectivity as the FES group. Furthermore, FC between the left thalamus and right putamen was significantly correlated with execution speed and attention in the FES group. ConclusionsOur findings revealed decreased thalamocortical FC associated with cognitive deficits in FES and UHR subjects. This improves our understanding of the functional alterations in thalamus in prodromal stage of schizophrenia and the related factors of the cognitive impairment of the disease. Trial registrationClinicalTrials.govNCT03965598; https://clinicaltrials.gov/ct2/show/NCT03965598.
Read full abstract