ABSTRACTWe present a stochastic microstructure evolution model applicable to grain growth and its recent extensions, in particular relative to dislocation plasticity. The model is implemented by means of numerical simulations based on the velocity Monte Carlo algorithm. It describes the evolution of a two-dimensional microstructure by tracking the motion of triple junctions, i.e. the vertices where three grain boundaries meet. Grain boundaries can be modeled as straight or curved segments; the misorientation dependence of both grain-boundary energies and mobilities can be included, as well as grain rotation. We show simple examples of normal, abnormal and oriented grain growth. The model is already capable of dealing with a two-phase (liquid-solid) system, to simulate both grain growth and grain dissolution in the liquid. Finally, we report preliminary results of a recent extension of the model to include mechanical deformation from dislocation plasticity.
Read full abstract