Abstract Humans are usually better than autonomous robots in operating in complex environments. In bilateral teleoperation, to take full advantage of the human's intelligence, experience, and sensory inputs for performing a dexterous task, a possibility is to use the two hands of the user to manipulate two master haptic devices in order to control a slave robot with multiple degrees-of-freedom (DOF); the total DOFs of the two masters are equal to the DOFs of the slave. In this paper, two 1-DOF and 2-DOF haptic robots are considered as the two masters while a 3-DOF robot acts as the slave in a trilateral teleoperation system. It is discussed how such a system can result in better task performance by splitting the various DOFs of a dexterous task between two hands or two users, e.g., during peg-in-the-hole insertion. The stability analysis of such a system is not trivial due to dynamic coupling across the different DOFs of the robots, the human operators, and the physical/virtual environments. Also, the unknown dynamics of the users and the environments exacerbate the problem. We present a novel, straightforward and convenient method for stability analysis of this teleoperation system. Simulation results demonstrate the validity of the approach.
Read full abstract