Abstract

Most studies on bilateral teleoperation assume known system kinematics and only consider dynamical uncertainties. However, many practical applications involve tasks with both kinematics and dynamics uncertainties. In this paper, trilateral teleoperation systems with dual-master-single-slave framework are investigated, where a single robotic manipulator constrained by an unknown geometrical environment is controlled by dual masters. The network delay in the teleoperation system is modeled as Markov chain-based stochastic delay, then asymmetric stochastic time-varying delays, kinematics and dynamics uncertainties are all considered in the force-motion control design. First, a unified dynamical model is introduced by incorporating unknown environmental constraints. Then, by exact identification of constraint Jacobian matrix, adaptive neural network approximation method is employed, and the motion/force synchronization with time delays are achieved without persistency of excitation condition. The neural networks and parameter adaptive mechanism are combined to deal with the system uncertainties and unknown kinematics. It is shown that the system is stable with the strict linear matrix inequality-based controllers. Finally, the extensive simulation experiment studies are provided to demonstrate the performance of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.