This paper describes the MOMBE (metalorganic molecular beam epitaxy) growth characteristics of antimonide compounds using TMIn (trimethylindium), TEGa (triethylgallium) and TIBAl (triisobutylaluminium) as group III sources, and As 4, Sb 4, TEAs (triethylarsine) and TESb (triethylstibine) as group V sources. Large differences in the growth characteristics of GaAs and GaSb MOMBE are observed. These are explained, using a theoretical consideration of the growth mechanism, by the difference in the effective surface coverage of excess As and Sb atoms during the growth. The use of TEAs and TESb instead of As 4 and Sb 4 alters the growth rate variation of both GaAs and GaSb with substrate temperature ( T sub), which results from the interaction of alkyl Ga species with the alkyl radicals coming from the thermally cracked TEAs and TESb. The alkyl exchange reaction process is observed in the growth of AlGaSb using TIBAl and TEGa, where the incorporation rate of Al is suppressed by the coexistence of TEGa on the growth surface, in the low T sub region. This is caused by the formation of an ethyl-Al bond which is stronger than the isobutyl-Al bond. The composition and the growth rate variations of InGaSb with T sub are similar to those of InGaAs, which are closely related to the MOMBE growth process and are quite different from those of MBE (molecular beam epitaxy) and MOVPE (metalorganic vapor phase epitaxy) growth. In the MOMBE growth of InAsSb and GaAsSb using TEAs and TESb, the composition variation with T sub is weaker than that of MBE. This is a superior point of MOMBE growth for the composition control. The electrical and optical properties of MOMBE grown films as well as the quantum well structures are also described.