Abstract Consider the equation { - Δ H 3 u = f ( ξ , u , ∇ H u , ∇ H 2 u , ∇ H 3 u , ∇ H 4 u , ∇ H 5 u ) in Ω , u > 0 in Ω , u = ∂ ∂ ν ( ∇ H 2 u ) = ∂ ∂ ν ( ∇ H 3 u ) = 0 on ∂ Ω , \left\{\begin{aligned} \displaystyle{}{-}\Delta_{H}^{3}u&\displaystyle=f(\xi,u% ,\nabla_{H}u,\nabla_{H}^{2}u,\nabla_{H}^{3}u,\nabla_{H}^{4}u,\nabla_{H}^{5}u)&% &\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle>0&&\displaystyle\phantom{}\text{in }\Omega,\\ \displaystyle u&\displaystyle=\dfrac{\partial}{\partial\nu}(\nabla_{H}^{2}u)=% \dfrac{\partial}{\partial\nu}(\nabla_{H}^{3}u)=0&&\displaystyle\phantom{}\text% {on }\partial\Omega,\end{aligned}\right. where Ω is a domain of the finite-dimensional space ℍ n {\mathbb{H}^{n}} and f is a positive and bounded function. We prove the existence of a solution for the above equation. In addition, we prove the uniqueness and the cylindrical symmetry of the solution.
Read full abstract