We show how a lattice approach can be used to derive Thermodynamic Bethe Ansatz (TBA) equations describing all excitations for boundary flows. The method is illustrated for a prototypical flow of the tricritical Ising model by considering the continuum scaling limit of the A4 lattice model with integrable boundaries. Fixing the bulk weights to their critical values, the integrable boundary weights admit two boundary fields ξ and η which play the role of the perturbing boundary fields ϕ1,3 and ϕ1,2 inducing the renormalization group flow between boundary fixed points. The excitations are completely classified in terms of (m,n) systems and quantum numbers but the string content changes by certain mechanisms along the flow. For our prototypical example, we identify these mechanisms and the induced map between the relevant finitized Virasoro characters. We also solve the boundary TBA equations numerically to determine the flows for the leading excitations.
Read full abstract