Abstract The two isotypic rubidium chalcogenido diferrates Rb12[Fe2 Q 6](Q 2)3 (Q=S/Se), which both form needles with green-metallic lustre, were synthesized from Rb2S, elemental iron, rubidium and sulfur (Q=S) or from the pure elements (Q=Se) at maximum temperatures of 500–800°C. Their triclinic crystal structures were determined by means of X-ray single crystal data (space group P1̅, a=863.960(10)/903.2(3), b=942.790(10)/982.1(3), c=1182.70(2)/1227.4(4) pm, α=77.4740(10)/77.262(6), β=71.5250(10)/71.462(6), γ=63.7560(10)/63.462(5)°, Z=1, R1=0.0308/0.0658 for Q=S/Se). The structures contain isolated dinuclear anions [FeIII 2 Q 6]6− composed of two edge-sharing [FeQ 4] tetrahedra (dFe −Q =223.4–232.3/236.2–244.8 pm), which are also found in the two polymorphs of the pure alkali diferrates Rb6[Fe2 Q 6]. The diferrate ions are arranged in layers running in the a/b plane around z=0. Inbetween (around z ≈ 1 2 $z \approx {1 \over 2}$ ), two crystallographically different disulfide/diselenide ions Q 2 2 − $Q_2^{2 - }$ (dQ −Q =211.1–213.4/237.9–241.1 pm), which are arranged in slightly puckered 36 nets, are intercalated. The intra-anionic distances and angles, the Rb coordination numbers and the molar volumes of these two ‘double-salts’ are in accordance with their corresponding reference compounds, Rb6[Fe2 Q 6] and Rb2 Q 2. In addition, the two polymorphs of Rb6[Fe2Se6], which are both isotypic with the sulfido analogous (Cs6[Ga2Se6]-type, monoclinic, space group P21 /c, a=827.84(5), b=1329.51(7), c=1074.10(6) pm, β=127.130(5)°, R1=0.0443 and Ba6[Al2Sb6]-type, orthorhombic, space group Cmce, a=1963.70(3), b=718.98(3), c=1348.40(7) pm, R1=0.0264) were prepared and characterized to complete the series of alkali diferrates(III) with oxido, sulfido and selenido ligands. The electronic band structures of the three Rb salts Rb6[Fe2 Q 6], which have been calculated within the GGA+U approach applying an AFM spin ordering in the dimers and appropriate Hubbard parameters, allow a comparison of the chemical bonding characteristics (e.g. covalency) and the magnetic properties (magnetic moments) within the series of chalcogenido ligands. An analysis of the spin densities enables a comparative consideration of the mechanisms crucial for the magnetic ordering in chalcogenido ferrates. Ultimately, the electronic structure of the new compound Rb12[Fe2S6](S2)3 nicely compares with those of the S2-free reference compound Rb6[Fe2S6].